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The different modifications of the models of two-phase multicomponent filtration 
(Collins 1961 ; Nikolaevsky et al. 1968) enable one to study the dynamics of filtration 
flows, taking into account phase transitions. The equations of multicomponent 
filtration are quite complicated and only in a few individual cases do they allow for 
an exact solution. The most frequently used of these appears to be the solution of the 
stationary problem of the flow of a multicomponent mixture toward a well or a 
system of wells (Khristianovich 1941). In  the present paper we show that a t  certain 
values of pressure, temperature and composition of the multicomponent mixture a 
stationary solution of the problem may not exist. The absence of a stationary 
solution is related to the possibility of a spatially homogeneous solution losing its 
stability under a perturbation (Mitlin 1986a, 1987b). We obtain an analytical 
criterion for instability. As an illustration, we present the results of the numerical 
solution of the planar linear problem of the evolution of a multicomponent system 
whose pressure and composition are perturbed with respect to their constant values, 
which are equal a t  both ends. We have done a numerical analysis of the plane-radial 
problem of the operation of a gas-condensate well with different mass fluxes, 
applying the conditions of a real deposit. There are several ranges of flux where the 
flow becomes pulsating. It is shown that the time within which the stationary 
solution sets in is a non-monotonic function of flux and on approaching the stability 
limit diverges in inverse proportion to the undercriticality of debit. We have 
analysed the connection between the observed instabilities and the thermodynamics 
of two-phase multicomponent mixtures. It is shown that the instabilities are 
associated with the system entering the region of retrograde condensation. We 
discuss the relation of retrograde phenomena to the effect of negative volume of 
heavy components and, as a consequence, to the negative compressibility of an 
individual volume of a two-phase mixture moving in a porous medium. It is shown 
that the observed autowave modes are relaxation oscillations in a distributed 
system. By using the method of perturbations in the interphase equilibrium time, we 
have analysed the loss of stability in a more general - non-equilibrium - model. We 
show that the instabilities are generated according to the Landau-Hopf scenario and 
calculate the period of auto-oscillations. The one-mode approximation of the theory 
leads to the Van der Pol equation. In  conclusion we present an experimental 
confirmation of the theory. 

1. Introduction 
In the present paper we consider one of the possible scenarios according to which 

the stationary regimes of two-phase multicomponent filtration may lose their 
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stability and, as a consequence, according to which autowaves may appear. 
Pulsatory filtration regimes are constantly encountered by engineers when they 
study the exploitation of oil-gas-condensate deposits. The observed pulsations may 
be caused by the action of non-monotonic or periodic external forces (Moon, 
earthquakes, microseismic action, etc.). Such effects will not be considered here. We 
shall be interested in a situation where there is a time-monotonic (e.g. constant) 
inflow of energy into an open system, which, owing to its own nonlinearity, 
transforms the incoming energy into oscillations. We shall also be interested in the 
conditions (bifurcational values of the parameters) under which branching of the 
solution occurs and the stationary regime is replaced by the autowave. Such effects 
are studied by synergetics (Haken 1983). This approach is rather general : the specific 
aim of our present study is to find the relation between the observed instabilities and 
typical features of phase diagrams for multicomponent mixtures. In  our scenario the 
autowaves are associated with the cyclic changing of the following processes: the 
increase of the volume occupied by the liquid phase (condensation) ; the flow of the 
liquid as it becomes sufficiently mobile in the porous medium ; and the diminishing 
of the volume occupied by the liquid phase (evaporation). Correspondingly, the 
instability of conditions are equivalent to the conditions of the system being in the 
region of retrograde condensation. We shall discuss in detail the relation between 
retrograde phenomena and the so-called effect of negative volume of heavy 
components. It will be shown that there is a direct connection between these 
phenomena and the negative compressibility of an individual volume of the filtrating 
two-component continuum and that this is what leads to instability. It is shown that, 
mathematically, the loss of stability occurs via Hopf bifurcation and that the 
autowaves are relaxation oscillations in a distributed system. Finally, we discuss the 
results of recent experiments to check the predictions of the considered theory. These 
experiments have confirmed the correctness of our theoretical concepts (Mitlin 
1986a, 1987b). 

2. Initial equations and stability conditions 
Assuming that the process is isothermic ; that the generalized Darcy law for phases 

is valid; that the gravitation, diffusion and capillary forces are small; and that there 
is local thermodynamical equilibrium between phases, let us consider a system of 
filtration equations for a two-phase 1-component mixture (Collins 1961 ; Nikolaevsky 
et al. 1968) : 

(2.1) 
8Nz. 

m - 2 -  - V - ( k p i V P ) ,  i = 1, ..., 1, 
at 

In  (2.1) P(r , t )  is pressure, z i ( r , t )  is the mole fraction of the ith component in the 
mixture, 

2 I I 

c zi = c yi = xi = 1 ,  
i=l i=l i-1 

k ( r )  and m(r)  are the absolute permeability and porosity; fg, fw, pg,pw, and pg,pw 
are respectively the permeabilities, densities and viscosities of the phases ; yi and 
xi are mole fractions of the ith component in the gaseous and the liquid phases; 
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Mg = C:, ,M, yi and Mw = x : - l M t x t  are the average molecular weights of the 
gaseous and the liquid phases ; M, is the molecular weight of the i th component, 

where Kt is the equilibrium constant of the i th component ; S is the saturation of the 
porous medium by the liquid phase; V is the mole fraction of the gaseous phase, 

r is the radius vector of a space point, and t is time. 
In the above formulation, (2.1)-(2.4), of the problem the unknown quantities are 

P and zt (i = 1 , .  .., 1- 1). All the rest of the quantities are expressed through pressure 
and total composition. Indices g and w label respectively the gaseous and the liquid 
phases. This formulation of the problem and this choice of basic variables are most 
convenient for the mathematical simulation of multicomponent filtration (Aziz & 
Settari 1979). 

Let k and m be constant. Let us consider the linear stage of evolution of the 
perturbation of a spatially homogeneous solution in the region that has the form of 
a rectangular parallelepiped. As it is usually done when one studies hydrodynamical 
fluctuations, let us impose periodic boundary conditions a t  the boundary of this 
region. Owing to the autonomy of system (2.1)-(2.4), this corresponds to spatially 
periodic initial conditions for the problem considered here. In the case of an arbitrary 
region, after one isolates the time derivatives of P and zi in the initial equations, one 
should expand the solution in eigenfunctions of the differential operator on the right- 
hand sides of the linearized equations, which, in this case, are complex exponents. 

Let us present (2.1) as 

V.(kP,VP)  = m N L + z  - , i = 1, ..., 1. (; i3 
By summing (2.1) we get 

Substituting (2.6) into (2.5) and performing simple transformations, in the linear 
approximation we obtain 

aZf k a p  - n2p, -2 = ( P i - Z t P ) ~ V 2 P ,  i = 1, ...) 1-1, - _  
at at (2.7) 

where P = P(r,  t )  -Po, 
geneous solution.? In what follows, the quantity 

= zt(r,  t )  - z j ,  and index '0'  denotes the spatially homo- 

will be called the increment of stability of a spatially homogeneous solution. 

t From (2.7) it follows that P' and z,I are related as zE = k(P<-z ,P)P'/mNI.  
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The growth (or dying-out) of Fourier components of P and z; is determined by the 
eigenvalues of the linear response matrix of the system (2.1) : 

A = {a,,}: \ 1 G i G Z - 1 ;  

a,, = -q21; aii = 0, j < 1. J 
From (2.9) it follows that matrix A has 1- 1 identically zero eigenvalues and one non- 
zero eigenvalue A, = - q21. Here q2 = 47t2 cld_l Ly2 is the wave vector squared, Lj is the 
size of the region in thej th  direction, and d is the dimension of the region. By virtue 
of Lyapunov’s theorem (Marsden & McCraken 1976), the sufficient condition of 
instability of a spatially homogeneous solution is 

I < O .  (2.10) 

The possibility of losing stability essentially has to  do with the multicomponent 
system having more than one phase. Indeed, in the one-phase case (for example, a t  
V = I) we have j i  = zip, i = 1, . . ., I - 1,  and (2.10) is equivalent to the condition 
ap,/aP < 0, which corresponds to thermodynamical instability of the one-phase 
system and contradicts the initial assumption of the theory. Let us now show that 
when there are several liquids flowing without mixing with one another, condition 
(2.10) cannot be satisfied either. For simplicity, let us consider the system of 
equations for two-phase filtration. For a larger number of liquids the calculations 
become more cumbersome but are performed in exactly the same way. We have 

By linearizing system (2.1 1) with respect to  the spatially homogeneous solution 
and solving it with respect to F” and s’, one finds that the stability of a non- 
perturbed solution is determined by the eigenvalues of the matrix A = (av}:  

One of these eigenvalues is identically zero; the other is aZ2. One can easily see, 
however, that a22 is always negative. 

Let us finally note that when deriving condition (2.10) we made use of the 
dependence of N on P. When searching for analytical solutions of equations of 
multicomponent filtration one often makes the assumption that the mixture is 
incompressible or that the sum of partial volumes of components is constant - the 
Amague law (Barenblatt, Entov & Ryzhik 1984), which results in aN/aP = 0. I n  our 
case, if N is independent of P ,  the linearization gives V 2 P  = 0, the system of 
linearized equations becomes degenerate and the linear approximation becomes non- 
informative. 

Condition (2.10) can also be used for determining the regions of instability of 
stationary solutions in the case where one introduces into (2.1) terms that correspond 
to sources and sinks of sufficiently small power. This is a consequence of the fact that 
the positive eigenvalue A, changes little with a small variation of boundary 
conditions and of the equations themselves. Thus, the filtration modes for which the 
stationary solution of (2.1) is unstable can be obtained when one ‘turns on’ 
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FIQURE 1. Evolution of the perturbation of the space homogeneous state : profiles of P and S. 
(a) t = 0,  ( b )  t = 2 days, (c) t = 4 days, ( d )  t = 10 days, (e) t = 14 days, (f) t = 30 days. 

sufficiently weak sinks against the background of initial conditions PO and zf such 
that I(Po,zy, < 0. For condition (2.10) to hold, it is necessary that the 
multicomponent system has two phases, that its components mix, and that N 
depends on P.  

In order to describe the instabilities that we have observed in the calculations, let 
us present the results of a numerical solution of the planar linear problem of 
multicomponent filtration with the condition that the layer pressure a t  both end 
points is kept constant and equal to 46 MPa. The initial distribution of P and zi was 
perturbed with respect to the spatially homogeneous solution. In the process of 
calculation, the concentrations at the boundary were not fixed if the flow came 
toward it ; if the flow went away from it, the composition on the boundary was taken 
from the previous time layer. In  the calculations we have taken k = m2, m = 
0.1, T = 353 K ;  the initial composition was : CH, - 0.6926, C,H, - 0.0616, C,H, - 
0.0334, iC,Hlo - 0.0055, nC,Hlo - 0.0079, N, - 0.009, H,S - 0.0625, CO, - 0.0346, C,, 
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FIQURE 2 .  The same problem as in figure 1 : the  dynamics of S is shown in the middle of the 
solution region. 

(pentane and heavier) - 0.0928. These data and a set of fluxes in the next section 
correspond to conditions of the gas-condensate deposit at Karachaganak (USSR) in 
1985. 

The equilibrium constants were approximated by some functions of pressure ; the 
density and viscosity of phases were approximated by functions of pressure and of 
the molecular weights of the phases. The data necessary for constructing these 
dependences were obtained from preliminary calculations of phase equilibria for the 
initial mixture and different pressures according to the Peng-Robinson equation of 
state (Read, Prausnitz & Sherwood 1977). The phase permeabilities were taken to be 
of the form 

s < 0.2, s 2 0.8 

f, = [ik) 0.8-s ,S < 0.8. 

Our method of numerical calculation is a more complicated version of the IMPES 
method for equations of two-phase filtration (Aziz & Settari 1979) for the 
multicomponent case. The difference scheme is implicit with respect to pressure and 
explicit with respect to concentrations. I n  order to reduce the number of calculat>ions 
we designed a method without the iteration procedures by using the three-layer 
approximation of time derivatives in (2.1). A more detailed description of the method 
can be found in Mitlin (19866, 1 9 8 7 ~ ) .  

Figure 1 shows the profiles of P and S a t  different times. One can see that the 
solution is pulsating: the convexity of the profile changes. The pulsations of 
saturation are more interesting : a t  different times its profile has a different number 
of extrema. This means that the process involves waves of different wavelength. By 
comparing figures 1 (6) and 1 (f) we see that in the system, a successive change of 
spatial distributions of S occurs modulated and non-modulated in amplitude. This 
effect is typical of nonlinear oscillations : for example the Fermi-Pasta-Ulam return 
phenomenon in the theory of solitons (Yuen & Lake 1978), and the same phenomenon 
in equations with completely different structure - in the brusselator model with 
distributed parameters (Nicolis & Prigogine 1977). Figure 2 shows a fragment of the 
time variation of S in the middle of the solution region. 
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Calculations show that a t  each time, the stability increment has a negative value 
a t  one or several sites of the difference grid. At the same time, the perturbations with 
respect to the pressures 43 MPa and 48 MPa and the same composition died out : the 
system relaxed toward a spatially homogeneous state and a t  all points of the solution 
region the stability increment was positive. Thus, we have observed a ‘window ’ in 
the range of P-variation such that inside that window autowaves are generated in the 
system. Direct calculations of I for the same composition when P varies show that 
I < 0 exactly in the region 43.5 < P < 47.5 (see below figure 1 1 ) .  Thus, the test 
demonstrates that the appearance of autowaves is explained by hydrodynamical 
(but not numerical) instability. 

3. Pulsatory flow regimes of a multicomponent mixture 
Below we present the results of the solution of the plane-radial problem of the 

operation of a gas-condensate well with constant pressure at the boundary of the 
sink zone. The solution is found in the region (rb,Rk), P(r,  0) = P(R,, t )  = 55 MPa and 
zi(r,  0) = zi(R,, t )  ; the initial composition is as presented in the previous section and 
is kept constant a t  the boundary of the drain zone. At the well, a constant total mass 
flux is fixed: Q = 271hkPM;lr(aP/ar)I,_,,, where M ,  = C:= ,Mie i  and el = Pi/P is the 
mole fraction of the ith component in the flow. The values of k and m and the form 
of the functions Ki, p g ,  pw, pg, pw, fg, and f w  are the same as in the previous section. 
The seam thickness is h = 50 m, rb = 0.12 m, and R, = 25.12 m. 

The results of calculation are presented in table 1 and in figures 3-5. At Q = 
50 ton/day and Q = 7 0  ton/day (figure 3 a )  the problem has a stationary solution 
(the solution was considered stabilized if the pressure and saturation at the well were 
constant up to the fourth digit within 25 steps in time, i.e. 5 days). At Q = 86.4 ton/ 
day the stationary solution lost its stability : after 160 days the smooth variation of 
parameters was replaced by pulsations. The pressure a t  the well a t  that time was 
47.1 MPa. At Q = 100 ton/day the smooth lowering of pressure a t  the well was 
replaced by pulsations after 60days. The amplitude of pulsations grew up to  a 
certain magnitude, after which the solution transformed into a time-periodic one. 
The form of the stabilized pressure and saturation pulsations a t  the well, together 
with the fraction of gas in the product flow from the well, V,, and the fraction of 
heavy components (C5+) in the extracted gas, ah, are shown in figure 4(a). The 
position of the time zero in figure 4 is not important since the figure shows the 
behaviour of the solution a t  large t .  The profiles of S corresponding to its extreme 
values at the well at stabilized oscillations are shown in figure 3(b) .  In the cases where 
there are no stationary regimes, the stabilization time column, t , ,  of the table is left 
empty, while in the P,  S, V,  and ah columns in these cases we present the values 
averaged over a period of stabilized oscillations for r = r,,. AP and AS are the doubled 
amplitudes of stabilized oscillations of pressure and saturation. 

At Q = 160, 190, and 200 ton/day the stationary solution has existed (figure 3c) ,  
but the approach to it was accompanied by pulsations which appeared when the 
pressure a t  the well reached 47.1 MPa. The pulsations of P a t  the well appeared 
between 44 and 38 MPa and gradually disappeared, after which P smoothly fell until 
the system reached a stationary regime. In  these three calculations the pulsation 
time was maximum a t  minimum Q, the closest to the interval 86.4 < Q < 100, within 
which the pulsations did not die out a t  all. 

At Q = 210 ton/day, after the pressure a t  the well reached 34.9 MPa, a pulsatory 
regime appeared. At Q = 240 ton/day the stationary solution also existed. The form 
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FIGURE 3. Inflow of gas-condensate mixture to  a well (for conditions of deposit Karachaganak, 
USSR). (a ,  c ,  e )  Stationary solution ; steady-state profiles of P and S are shown. ( 6 ,  d,  f )  Stationary 
solution does not exist ; profiles of S corresponding to its extreme values at the well at stabilized 
oscillations are shown. (a )  Q = 70 ton/day, (b )  Q = 100 ton/day, (c) Q = 200 ton/day. ( d )  Q = 
240 tonjday. ( e )  Q = 420 ton/day, (f) Q = 500 ton/day. 

50 
200 
52 
7.9 
373  
98.1 

70 
400 
48.5 
7,1 
46,2 
90.5 

100 

46 
5,3 
62 
45,8 
2,9 
26 

- 
160 
320 
38.5 

55,l 
75.8 

4 2  

190 
320 
36.1 
3,4 
6 5 5  
77,8 

200 
420 
35 
3,1 
56,3 
77 

240 

33.2 
2,7 
53,9 
85,3 
1.6 
1,7 

- 
324 
160 
31.3 
2 2  
50,5 
92,8 

420 
140 
30.3 
1,9 
47,5 
96,l 

500 

30.1 
“0 
44 
97,8 
3 8  
2,6 

- 
700 

27.8 
2.1 

98,6 
17 
18,9 

- 

34,l 

TABLE 1 .  The inflow of gas-condensate mixture to a well : results of calculations 
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FIGURE 4. The same problem as in figure 3. Oscillations of parameters at the well at large 
times are shown. (a) Q = 100 ton/day, ( 6 )  Q = 200 ton/day, (c) Q = 500 ton/day. 

of stabilized pulsations at the well is shown in figure 4 ( b ) .  The profiles of saturation 
a t  its extreme values a t  the well are featured in figure 3 ( d ) .  

At Q = 324 and 420 ton/day the stationary solution appeared once again 
(figure 3e). In  this case, a t  the initial stage pulsations appeared, the amplitude of 
which reached significant values : up to 20 MPa in pressure. The time dependence of 
P and S a t  the well during the first 9 days is featured in figure 5. Compared to the 
pulsations in figure 5 (a ) ,  those in figure 5 ( b )  have a noticeable modulation depth. In  
both of these cases, when the pressure a t  the well reached 47.1 MPa (the upper limit 
of the first zone of instability), the saturation sharply changed -the system was 
‘thrown out’ into the stable zone. For some time after that  the process went on 
smoothly and the pressure a t  the well fell, and then a new change occurred in 
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FIQVRE 5. Dynamics of P and S at the well during the first 9 days. (a) Q = 324 ton/day, 
(b) Q = 420 ton/day. 
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the pulsatory regime (for Q = 324 tonlday this happened at  35 MPa; for 
Q = 420 ton/day at  32 MPa) but in the end the oscillations disappeared. It is 
interesting to note that at Q = 420 ton/day the system approaches the stationary 
mode in a very complicated manner. Figure 6 shows the variation of pressure at  the 
well at  t > 9 days. One can see that in the calculations, the flashes of stochastic 
behaviour (sharp peaks and gaps) alternated with dynamics that was almost periodic 
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FIGURE 7 .  Dynamics of phase flux in the problem with pressures of 45 and 55 MPa at the 
boundaries. Stationary regime exists. 

in time. As is well known, such effects have been observed in the scenario of 
turbulence generation via alternation (Landau &, Lifshitz 1986). 

At Q = 500 and 700 ton/day, at large t one observed stabilized pulsations. As one 
can see in figure 3 (f ), they involved a larger portion of space than in the case of 
smaller fluxes. Moreover, periodically, in the vicinity of the well a billow of S forms, 
which subsequently flattens out. 

It should be noted that pulsation generation does not depend on the geometry of 
the problem : this is shown by the calculations made in the previous section and, also, 
by the calculations for a planar linear problem with pressure fixed a t  one end and 
mass flux a t  the other. In  this case, too, one has observed pulsatory regimes, and the 
values of parameters of the system at which the stationary solution became unstable 
were close to the corresponding values for the plane-radial problem. 

Thus, a t  certain values of Q a self-sustaining regime is generated, with successive 
accumulation of the liquid phase in the zone surrounding the well and its leaving the 
seam. The pulsatory character of this process is due to the constant inflow of heavy 
components into the zone around the well and their condensation, owing to which the 
volume of the liquid phase becomes larger. When a sufficient amount of liquid is 
accumulated, and it becomes sufficiently mobile, it comes to the well, the saturation 
profile flattens out, and so on. Let us note that in addition to  the periodic regimes, 
at certain value of flux one observed non-damped oscillations which were not 
periodic in time, at least within the time considered in the calculation. The problem 
of stochastization of solutions of the multicomponent filtration equations requires 
further study (Zaslavsky 1984). 

From the fact that a spatially homogeneous solution may lose its stability and 
from what was noted in the previous section about the continuous dependence of the 
solution on the boundary conditions it follows that in the inflow problems one may 
encounter profiles of P that are non-monotonic in the spatial coordinate. In  any case, 
if the initial composition and pressure are such that I(Po,  z:, . . ., ~ 7 ~ ~ )  < 0 and the 
pressure at  the boundary of the sink zone equals the initial one, while the pressure 
at the well differs from P(R,) by a sufficiently small amount, P will have non- 
monotonic profiles. This is confirmed by the numerical calculations made in the 

13 FLM 220 
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FIG~JRE 8. The same problem as in figure 7 .  Profiles of P and A'. 

previous section. The distributions of pressure and composition were specially 
calculated to study the evolution of perturbations of a spatially homogeneous 
solution by preliminary solution of the problem with boundary conditions for 
pressure of 45 and 47 MPa. As one ran see in figure 1 (a ) ,  the distribution of prcssure 
is essentially non-monotonic. 

Figure 7 shows the time dependence of the mass flux debit for the gaseous and the 
liquid phases when the pressure a t  the well and a t  the boundary of the sink zone is 
respectively 45 and 55 MPa. There are no flux pulsations and the stationary regime 
of filtration sets in within 10 days. In  the calculations where the flux at the well was 
fixed one observed a pulsatory regime, though the pressure a t  the well averaged over 
a period of stabilized pulsations was close to 45 MPa (see table 1) .  This means that 
it is not a t  all necessary that for each stable stationary solution of the problem with 
fixed pressure a t  the well there should be a corresponding stable stationary solution 
of the problem with fixed flux. These two problems are different. In  other words, the 
solution essentially depends on the fixed boundary conditions. Figure 8 shows the 
stabilized profiles of P and S for the problem with P(T,,, f )  = 45 MYa and P(H,,  t )  = 
55MPa. The saturation of the liquid phase a t  the well coincides with the mean 
saturation a t  the well in the problem with fixed flux of 100 ton/day. However, on the 
whole, the profiles of S in figures 3 ( b )  and 8 are different from each other. The 
stabilized value V, = 0.35 is different from the period-average value for the 
corresponding case in table 1 .  The stabilized flux is Q = 75 ton/day and not 
100 ton/day. Moreover, these values cannot be the same since such a coincidence 
would mean that the stationary regime also exists for a fixed flux of 100 ton/day, and 
this has not been observed. In  our calculations with the pressures 40 and 48 MPa at, 
the well and 55MPa a t  the boundary of the drain zone, there were also no f lus  
pulsations, but a t  a pressure of 25 MPa a t  the well the pulsations did appear. 

I n  a series of calculations where the pressure a t  the well was kept equal to 46 MPa, 
while the pressure a t  the boundary of the sink zone varied, a reduction in P(R,) 
resulted in the appearance of pulsatory regimes. At P(R,, t )  = 48 MPa the stationary 
regime still existed, but a t  47.5 MPa pulsations had already appearcd. Figure 9 
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FIGURE 9. Oscillations of mass fluxes of gas and condensate in the problem with pressures of 46 
and 47, 5 MPa a t  the boundaries. 

shows the time dependence of the flux for the gaseous and the liquid phases when the 
pressure a t  the boundary of the drain zone is 47.5 MPa. The fact that  P has a non- 
monotonic profile is indicated by the negative values of Q g  and Q,  a t  certain times 
(figure 9 b) .  As was already mentioned, the non-monotonic character of the P-profile 
and the possibility of the flux changing its sign are both related to the fact that the 
problem solved here is very close to the problem of the evolution of a perturbation 
of a non-stable spatially homogeneous solution. Since model (2.1) makes no 
allowance for capillary effects a t  the boundary of the filtration region, a t  Q < 0 it 
looks as if the seam ‘sucks’ in the mixture in the well. The boundary effects in this 
model will apparently result in the sections in figure 9 where Q is negative being cut 
off. The well will become ‘spitting’: a t  one moment opening up and giving out 
products, at another shutting down. Let us note that pulsatory regimes in the 
calculations with sufficiently large pressure difference (e.g. P(R,, t )  = 55 MPa and 
P(rb,  t )  = 25 MPa) did not result in a negative flux and a non-monotonic profile of P. 

Let us now examine the behaviour of an important quantity, the stabilization time 
t, (in those cases where the stationary solution exists). I n  the case of the simplest 
elastic filtration mode of a homogeneous liquid, described by the piezoconductivity 
equation, the die-away time of pressure fluctuations about the spatially homogeneous 
solution depends only on the initial magnitude of the fluctuation and on the 
piezoconductivity coefficient. The die-away time is constant a t  equal initial 
magnitudes of fluctuations for all values of the unperturbed pressure. For more 
complicated flowing modes or in the case of sources or sinks it seems natural enough 
to suppose that t ,  increases as the flux becomes larger and, accordingly, the initial 

13-2 
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unperturbed state of the system moves farther away from its stationary state. The 
calculations made have shown that in this case t ,  is a non-monotonic function of Q. 
Namely, one observes a significant increase of Q as one approaches the intervals 
where stability is lost (see table 1) .  Let us show that when one approaches an interval 
of Q-values where the stationary solution does not exist, ts+ co as I&-&*\-'. Here 
the asterisk labels the critical regime which separates the problems with a stable 
stationary solution from those whose stationary solution is unstable. 

In  the general case, the stability of a stationary regime is established by 
considering a certain eigenvalue problem for the operator on the right-hand side of 
the system of equations linearized with respect to the stationary solution. For 
example, for problem (2.1) this will be the system 

k 
mN --[v.(p,vpI)-ziv.(pvp')] = A &  i =  1 )..., 1 - 1 ,  

with corresponding boundary conditions, where /It ,  p and N depend on the solution 
of the stationary problem, and P and z; are fluctuations. Suppose that a t  a certain 
value of the bifurcation parameter Q one of the eigenvalues h crosses the imaginary 
axis, i.e. Re (h)IQsQ. = 0. To be definite, let Re ( A )  < 0 at Q < Q* and Re ( A )  > 0 at 
Q > Q*. Then, at Q close to  Q* we have 

t, - Re(A)-' = R e - l k ( Q * ) + g I  (Q-Q*)]+o(Q-Q') 
Q-Q* 

and Q < Q*. 
1 

t ,  - ___ 
I Q  - &*I ' 

The formula for the stationary inflow of a multicomponent mixture (Khristianovich 
1941) g' ives us 

Q H(P(R,))-H(p(Tb)), 

where H is the flow potential. (As is well known, for steady-state flow only one 
variable P is 'free': all the rest are expressed through P (Khristianovich 1941); 
H = f PdP. )  Then t, can also be estimated as 

t s  - IP(rb) - P*(rb)[-'. (3.2) 

Formulae (3.1) and (3.2) enable one to  picture qualitatively the behaviour of t,(Q) 
(figure 10). As one approaches each interval of instability (Qt,, Q;,) ,  hatched in the 
figure, t, tends to  infinity. Between Q;, and is limited and passes through 
a minimum. Thus, in the problem considered, critical slowing down may occur before 
the stability is lost. Let us emphasize that the corresponding critical points in the 
parameter space are different from the purely thermodynamical critical point of a 
multicomponent liquid where all process of fluctuation resolution slow down (Ma 
1976). The new critical points are essentially related to the interaction of a 
multicomponent system with the porous medium. 

One may notice that our results concerning the non-monotonicity of the P-profile 
and the anomalously slow relaxation near an instability are independent of the 



Two-phase multicomponent jiltration 383 

Q 
FIQURE 10. Qualitative dependence of relaxation time on an external parameter of the 

problem. In the hatched region the stationary solution does not exist. 

specific form of system (2.1) and are due only to the very fact that unstable spatially 
homogeneous solutions do exist. This is why in the next section we discuss in detail 
the reasons why I can be negative. 

4. Retrograde phenomena and negative compressibility of an individual 
volume 

In order to understand what causes the generation of autowaves considered above 
one should first examine the properties of I .  Figure 11 shows the calculated P- 
dependences of the mole density N of the mixture (curve l), of the saturation by 
liquid S (curve 2)  and of I (curve 3) for the composition of the multicomponent 
system we have presented above. Despite the fact that conditions 

> o ,  > o  
ap XI ,..., X l W 1  111, ..., 111-1 

were satisfied, function N(P) proved to be non-montonic, decreasing (except for a 
narrow interval 50 MPa < P < 51 MPa) in the pressure range where S grows with 
decrease of P,  i.e. in the region of retrograde condensation (the hatched region in 
figure 11). Thus, the condition of negative compressibility of the multicomponent 
mixture does not contradict the conditions of positive compressibility of individual 
phases, and it is in these regions that I was negative. This is not a coincidence. One 
may construct a hypothetical model of a multicomponent mixture with phase 
densities constant or only weakly depending on P (compared to 8). The mass density 
of the mixture is 

iv = PWS+P,(1 -8) = (Pw-Pg)S+Pg- 
From this expression and the inequality pw > pg it follows that in this model, at a 
fixed total composition, the condition a&/aP < 0 exactly corresponds to regions of 
retrograde condensation. 

In  order to  understand the physical meaning of negative compressibility of a two- 
phase system moving in a porous medium one should turn to the known data on the 
thermodynamics of multicomponent systems. Figure 12 (a )  shows a typical 
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FIGURE 11. Calculated dependences of N (curve l ) ,  S (curve 2 ) ,  I (curve 3) on  P for initial 
composition from $ 2  are shown. 

pressure-temperature phase diagram for a mixture with constant composition. A 
characteristic geometric feature of such diagrams is that the section of the abscissa 
cut off by a vertical tangent to the boundary of the two-phase region is greater than 
the value of the abscissa for the critical point K and the size of the segment 0 K .  The 
properties of the curve K K K  determine the configuration of lines of equal saturation 
(dashed lines) so that for temperatures above the critical point S(P)  is non-monotonic 
with a decrease of P (figure 12 b ) .  The value of P at the point where X is maximum 
is called the maximum condensation pressure. Thc point a t  which the liquid appears 
with a decrease of P corresponds to the pressure at the beginning of condensation. 
The range of pressures below (above) the maximum condensation pressurc 
corresponds to direct evaporation (to retrograde condensation). 

In the context of the oil industry, the methods of finding the shape of R(P)-curves 
a t  fixed concentration of the mixture are called contact condensation experiments. 
Another popular method of studying the properties of mixtures is the so-called 
differential condensation. I n  this case, a t  each stage of condensation one lowers thc 
pressure in the vessel containing the mixture and extracts the liquid that has 
condensed, and after that brings the rest of the mixture to the initial pressure or 
(in another variant of the experiment) to the initial volume. One can sce that in this 
way one reproduces the effect of liquid condensation with the motion of an individual 
volume of the mixture through a porous medium. In any case, this is the generally 
accepted interpretation of experiments on differential condensation (Amyx, Bass & 
Whiting 1960). 

One of the most curious effects observed in experiments on differential 
condensation is the so-called negative volume of heavy components, the phenomenon 
whereby with condensation of liquid the volume of the remaining mixture grows 
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FIGURE 12. (a) A typical P-T phase diagram for a mixture with constant composition. ( b )  A typical 
dependence of S on P corresponding to the effects of retrograde condensation and direct 
evaporation. (c) The evolution of an individual volume of mixture moving in a porous medium. The 
effect of negative volume of heavy components leads to the negative compressibility of an 
individual volume (P2-+P2 > PI, V + A V >  V ) .  

instead of becoming smaller (if the pressure is the same) or (if the volume is kept 
constant) the pressure becomes higher. Apparently, this effect was first discovered by 
Katz & Sliepcevic in 1945. In  their experiments, which were made a t  fixed pressure, 
with successive extraction of C,,, C,, C,, C,, C,, and C, components the volume of the 
mixture first increased and then (after all C, and heavier components have been 
extracted) began to diminish. Figuratively speaking, the heavy components had a 
sort of negative volume which, after they were extracted from the mixture, was 
added to the volume of the remaining system. The many experimental studies (Sage 
& Lacey 1950; Velikovsky & Stepanova 1962) have shown that the effect of the 
negative volume of heavy components is observed (i) in the regions of retrograde 
condensation and (ii) near the critical point of the multicomponent system. Let us 
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note that it is the proximity to the critical point that  may be the cause of a stronger 
dependence of S on P compared to This follows from the fact that in the near- 
critical state the lines of equal saturation in figure 12 (a )  come infinitely close to one 
another, which means that a small variation of Y can lead to a large variation of S. 
In  this case the model of a mixture where the phase densities change very little 
compared to S predicts negative compressibility in the region of retrograde 
condensation. Thus, the effect of negative compressibility of a mixture (figure 11)  
and the effect of negative volume of heavy components should take place under 
similar thermodynamical conditions. 

Let us now show that if the multicomponent mixture is selected in such a way that 
in experiments on differential Condensation one observes the effect of negative 
volume of heavy components, then the properties of such a mixture, when it moves 
under the same conditions through a porous medium, are described by descending 
density, Indeed, in the case of differential condensation we can place the liquid 
deposited in vessel I into vessel 11. If then the volume of vessel I is brought to its 
initial value, the pressure in it, as was said above, will become higher than i t  was 
initially. Now let us change the volume of vessel I1 in such a way that the pressure 
in i t  will become equal to  the new pressure in vessel I. We see that the pressure in 
system I+II  is higher than the initial pressure in vessel I. At the same time the 
volume I+II is also greater than the volume of vessel I. Thus, by moving some of 
the molecules from one part of the system to another one can reproduce the effect of 
negative compressibility provided that the molecules were transferred inside the 
system according to their molecular weight (for instance, leaving the heavier 
molecules in their place). 

The above two-chamber experiment was selected for a particular reason : it reflects 
the changes that occur in an individual volume of the mixture as i t  moves in the 
filtration flow and comes into the region where the pressure is lower than it was at 
the beginning of condensation (figure 12c). It is in this region that the phenomenon 
of the negative volume of heavy components occurs. Some of the heavy components 
are deposited into the initially immobile liquid phase while the lighter ones move on 
further. Thus, the part of the individual volume located higher upstream the flow 
plays the role of chamber 11, while the part downstream the flow plays the role of 
chamber I. As was shown, for the individual volume as a whole one will observe the 
effect of negative compressibility which is due to the fact that  the volume moves in 
a porous medium that acts differently upon the gaseous and the liquid phases. In  the 
two-chamber experiment the difference in action upon different phases is simply due 
to the gravitational separation of substances with different densities. 

The above considerations show that when describing the hydrodynamics of a two- 
phase mixture in a porous medium in the region of retrograde condensation one 
should take into account the possible descending of the mixture density. This 
becomes especially evident when one describes the flow not with Eulerian 
coordinates, which are secondary, but with Lagrange coordinates, which are primary 
in continuum mechanics and are designed for describing the evolution of an 
individual volume. It is also important that  when we use a continuous description 
like (2.1): we are dealing with quantities averaged over a large number of pore 
channels. In some of the channels belonging to the averaging volume differential 
condensation may occur, while the others will be filled with lighter components 
carried away along the flow. Thus, the appearance of a descending density branch in 
the thermodynamics of an individual volume of a two-phase mixture moving in a 
porous medium seems to  be not only natural but also inevitable. The scheme 
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presented of the experiment with a two-chamber model gives one, in the first 
approximation, a method of determining the descending density branch under 
laboratory conditions. 

5. From a non-equilibrium model of multicomponent filtration to a model 
with local equilibrium 

Let us now see how the results obtained above change as we turn to more complete 
models of filtration. As is easily seen, the introduction of terms into system (2.1) that 
are responsible for capillary and diffusion effects, and are small compared to the 
terms describing convective transfer, will not affect the possibility of I changing its 
sign due to its denominator running through zero, if such a possibility existed 
initially in model (2.1). The account of the non-equilibrium character of interphase 
transfer is another matter. Let us examine this problem more closely and show that 
the account of non-equilibrium effects regularizes problem (2.1) in a situation where 
the quantity a ~ / ~ p l z l ,  ...,zl--l may change its sign, and in the framework of model (2.1) 
we have (relaxation) oscillations discontinuous in time. 

One may start with the system of equations of the form (Nikolaevsky et al. 1968; 
Rozenberg et al. 1969) 

aNzi - 
m- - V.(kp,VP),  i = 1, ..., 1, (591) at 

(5.2) at 
aN 

? n A  = v.(kflvP)+T-'(p,, i = 1, ...) 1. 

This system is a generalization of (2.1) to the case of non-equilibrium multicomponent 
filtration. Here Ng = pg(  1 -S ) /M,  ; is the part of pi corresponding to the motion of 
the gas ; and 7 is the characteristic relaxation time for interphase mass exchange. In 
the general case we have a set of quantities ri for each component. Quantity (pi 

measures the deviation from phase equilibrium in the ith component and, according 
to the relations of non-equilibrium thermodvnamics, is proportional to the difference 
of chemical potentials 0; the ith componerks in 

1 1 

c Yr = c zi = 
i-1 t-1 

In the zeroth approximation with respect to 
with the closing constraints 

the liquid and gaseous phases, 

1 .  

7, (5.1) and (5.2) give system (2.1) 

(5.3) 
Relations (5.3) are equivalent to (2.3) (Read et al. 1977). For system (5.1) and (5.2), 
the unknown quantities are u = (zl, ..., zIP1, P) and v = (yl, ..., yl- l ,  8). In the local- 
equilibrium model (5.1), (5.3), tr can be expressed through u using relations (5.3), and 
thus at r = 0 the unknown quantities are u. 

By considering the problem of the linear stage of the evolution of perturbations of 
a spatially homogeneous solution of system (5.1), (5.2) in the region shaped like a 
rectangular parallelepiped with dimensions L,, it  is easy to show that condition (4.1) 
is sufficient for the elements of the linear response matrix not to have poles. This 
holds for any T > 0 but at T = 0, as was shown above, despite the fact that condition 
(4.1) is satisfied, the denominator o f I  can become zero. Since the transition from (5.1) 
and (5 .2)  to (5.1) and (5.3) occurs a t  r+O, it  is natural to examine this transition 
using the method of perturbations. 

- 
(pz=o ,  i =  1 )..., 1. 
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By linearizing (5.2) and considering the Fourier components of fluctuations, uk and 
v;, instead of (5.2) we get 

(5.4) 

Here q2 is the wave vector squared; A, B, C, E,  and F are 1 x 1 matrices depending 
on the spatially homogeneous solution. The structure of these matrices is determined 
by (5.2). For instance, E and F a r e  matrices of the first derivatives ofq,  with respect 
to components of vectors u and v. By using (5.4) one can show that, up to the second- 
order terms in 7 ,  vb is expressed through u; in the following way: 

(5 .5)  

Let us note that if one makes the transformation to originals in (5 .5) ,  one will get a 
relation between u and u involving both time and space derivatives. The existence of 
matrix F-l follows from the implicit function theorem for Q = 0 and from the fact 
that in the model (5.1), (5.3) v can always be expressed through u using (5.3). 

After linearization and transition to Fourier components of fluctuations, system 
(5.1) acquires the form 

du' 
U' = - F - ' E u ; + ~ ~ ~ F - ~ C U ; + ~ ( F - ' A -  F-'BF-lE)-. 
4 at 

du' dv' 
dt dt 

D--9+M-=-q2Gu;, (5.6) 

where D, M, and G are I x l  matrices. By substituting (5.5) into (5.6) we obtain 

d2u' du' 
dt 

7MF-'(A- BF-Y)--$+ [(D- MF-'E)+7q2MF-1C]-4+42G~k = 0. (5.7) 

At 7 = 0, from (5.7) one should obtain the linearized system (5.1)-(5.3) expressed 
in terms of Fourier components of fluctuations, or, equivalently, system (2.1)-(2.4). 
Transforming (5.7) in such a way that the matrix that stands in front of dub/dt and 
does not depend on q2 becomes diagonal (this is achieved by the same transformations 
as those used in $2 for transforming the initial linearized system (2.1) into system 
(2.8)), we obtain 

d2u' du' 
7R1++(RI1+ dt R1*Iq27)$+q2RIvu~ = 0, (5.8) 

where R" = {r;} are square matrices of order 1. Thus, instead of 21 equations (5.1), 
(5.2) we obtain 1 equations of the second order in t, with the initial conditions for 
du;/dt found from the initial conditions for system (5.1), (5.2), and (5.5). Comparing 
(5.8) at 7 = 0 with (2.8), we find 

R1I=(*";), R I.(: - O . . . O  . : . r:: . : ) , 
0.. .0 

0 aN 

1 
= a(pt-zip), i = 1 ,  ..., 1- 1, 
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The form of matrices R" and RIII is unessential for what follows. 
Now we notice that, up to  the ?,-terms, for obtaining the equation for P; = u;: one 

should substitute the zeroth approximation of ui, (i = 1, . . . , I - 1) into the last line in 
(5 .8) .  We obtain 

where 

r d ,  $+ d 2 P  ( ~ t q ~ ~ d , ) - - $ + q ' d ,  aN dp' Pi = 0,  
(5.9) 

The expression for d ,  is obtained by taking account of the fact that both RII1 and C 
have non-zero elements only in their lth column. 

Thus, the proximity of aN/i3P to zero makes it necessary to take into account the 
second-order time derivatives in the equation for P,  i.e. to take into account the non- 
equilibrium effects. By comparing (5.9) and (2.8), one can see that the condition 
I-1 = 0 in the local-equilibrium model a t  d ,  d3  > 0 and aN/i3P + q2r d, = 0 corresponds, 
in the non-equilibrium model, to the moment a t  which the time-periodic solutions 
of small amplitude appear. If, in addition, we have d ,  > 0, then all the conditions 
necessary for continuation of periodic solutions into the region of instabilit,y in the 
problem considered are satisfied. Indeed, from (5.9) it follows that in the given 
problem the eigenvalues are found, up to the r2 terms, from the equation 

7 d l h 2 +  -+q27d2 h+q2d3 = 0. (E ) (5.10) 

If a pair of eigenvalues corresponding to  the minimum value of the wave vector 
squared, 

4n2 
4: = d 

c Lj" 
j=1 

is purely imaginary (according to (5.10), this will happen at  -i3N/tIP = q i  r d , ) ,  then 
all the modes with smaller wavelength (q2 > q;) will have eigenvalues lying in the left 
half-plane. According to Hopf s theorem for distributed systems (Marsden & 
McCracken 1976), the periodic orbit corresponding to q i  can be continued into the 
region aN/aP < - g i r d , .  

The period of the auto-oscillations generated from (5.9), equals 

Tp = 2n(s-, (5.11) 

i.e. is proportional to  the spatial scale of fluctuations and to the square root of 7. By 
analysing the structure of coefficients d ,  and d, in (5.11) more closely one can show 
that the period of auto-oscillations is of the order of the geometric mean of the 
characteristic phase equilibrium time r and the characteristic time of transfer of a 
mixture particle in the filtration flow along the solution region rf:  

Thus, if the auto-oscillations are generated in a region of size around 1 m (e.g. in the 
zone surrounding a well) and have a period of about 1 hour, the auto-oscillations at 
the scale of the deposit (kilometres) will have a period of around a month. 
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FIGURE 13. Relaxation oscillations in the one-mode approximation : the phase plane is 
constructed from (5.13). 

In the one-mode approximation, the nonlinear equation for Pi corresponding to 
the linearization of (5.9) will have the form 

(5.12) 
+q2d3P; = 0, 

d 2 P  dW(Pi) 
rd l$+ dt 

ia3N 1 aN l a 2 N  
W(P;) = q2r d, Pi + -Pi + -7 (Pi),  + -- (Pi)3.  

ap 2 a p  6 aP3 

This equation is obtained by keeping the terms nonlinear in P in the function N(P) 
in the vicinity of the spatially homogeneous solution with aN/aP w 0. It is close to 
the Van der Pol equation and at a2N/aP2 = 0 coincides with i t  exactly (Andronov, 
Vit t  & Khaikin 1982). Like the Van der Pol equation, (5.12) can be examined from 
the viewpoint of the theory of relaxation oscillations. Let us present (5.12) in the 
form of equivalent systems : 

where $ = Pi; t ,  = t / r  is the short timescale. Figure 13 shows the phase plane of 
(5.13). The limit r = 0 in the right-hand side of (5.13) describes the fast motion along 
sections 1-2 and 3 4  of the plane trajectory. The slow motion along 2-3 and 1 4  is 
described by equations of the second system in (5.13) a t  r = 0. Taking the limit r = 0 
in the 'slow' system in (5.13) leads to instantaneous relaxation of the solution in 
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the vicinity of points 1, 2, 3, and 4, corresponding to zero compressibility, and the 
motion is described as being piecewise discontinuous with sections where parameters 
vary monotonically, alternating with discontinuities. At small non-zero T the auto- 
oscillations will have the form of alternating fast and slow motions. It is noteworthy 
that here the fast motions correspond to crossing of regions of retrograde 
condensation in the space of thermodynamical parameters, while the slow motions 
are associated with regions of direct evaporation. Let us note that this picture 
corresponds to keeping only one mode in the nonlinear description. The calculations 
made in $$2 and 3 show that there may be more complicated autowave regimes 
corresponding to the interaction between several modes. 

6. Discussion of experimental results and conclusions 
We thus see that the possibility of autowave generation is related to the loss of 

stability of stationary solutions of equations of two-phase multicomponent filtration. 
According to the above considerations, the loss of stability in a distributed system 
should occur in the region of retrograde condensation. The self-sustaining oscillations 
should be generated owing to the cyclic alternation of the following processes: (i) 
accumulation of the liquid phase in the region of space corresponding to retrograde 
condensation, (ii) transport of the liquid in the filtrational flow into the region 
corresponding to evaporation, and (iii) the diminishing of the volume occupied by the 
liquid phase in this latter region. It is predicted that there may be non-monotonic 
profiles of pressure and the anomalous increase of the time within which the 
stationary regime sets in as one of the parameters approaches the region of 
instability. This process may have the character of autowaves in an open system, i.e. 
under continuous inflow of energy from outside. 

The results presented have been mainly obtained in 1985, were reported a t  the 6th 
All-Union Conference on Mechanics in 1986 and were published as a short report in 
1987. The next step was to obtain experimental confirmation of the theory. We do 
not mean the observation of fluid auto-oscillations with exploitation of deposits ~ 

there have been plenty of such observations already. The principal idea was to do 
experiments under laboratory conditions in the range of parameters predicted by the 
theory. Such experiments were performed in 1988 by B. V. Makeev. A complete 
account of the results obtained is presented in our paper (Makeev & Mitlin 1990). 
Here I shall mention only the most important confirmations of the theory obtained 
in these experiments. 

The experiments were done with a linear model of a seam with a porous medium 
poured on. The pressure a t  the inlet was kept constant and equal to 13.4 MPa (the 
system was open). The simulation was done at 296.5K, with a multicomponent 
mixture for which the filtration occurs both in the regime of retrograde condensation 
and in the direct evaporation regime, depending on the pressure a t  the given point 
of the linear model of a seam. The mixture is characterized by the pressure a t  the 
beginning of condensation 12.7 MPa and by the maximum condensation, pressure 
12 MPa. The system was brought into the working regime by lowering the pressure 
in the model from 15 MPa. 

Two experiments were performed. I n  the first the pressure a t  the inlet of the linear 
model was 9.4 MPa. Figure 14 shows the time variation of pressure a t  different points 
of the model. The ith curve corresponds to measurements made at the point with 
coordinates ri = ( i /6)L.  One can see that there are damped oscillations of pressure, 
their amplitude being the greater the closer the measurement point is to the exit of the 
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FIGURE 14. Dynamics of P a t  different points of the model of a seam (experiment 1).  For curve 
labelling, see text. 
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FIQURE 15. Dynamics of the flow velocity a t  the exit of the model (curve 1 corresponds to the 
first experiment, 2 to  the second one). 

model. At the point r5 the amplitude of oscillations reached 0.9 MPa. The profiles of 
P change little along the seam when the pressure is around the pressure a t  the 
beginning of condensation or around the maximum condensation pressure. 

A chromatographic analysis of the mixture coming out of the seam has shown that 
there are oscillations of composition in the flow. 

Figure 15 shows the time variation of the flow velocity a t  the exit of the model 
(curve I). The characteristics of the rate a t  the exit, Q ,  were measured here in units 
of m3/min at  T = 296.5 K and P = 0.1 MPa. The velocity oscillations have a period 
of 40 min. The maximum values of velocity correspond to minima in curve 5 (figure 
14), and vice versa. The oscillations die away in about 3 to 3.5 hours. 
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FIGURE 16. Dynamics of P at different points of the model of a seam (experiment 2). Labelling 
corresponds to figure 14. 

In  the second experiment the pressure at the exit of the model was fixed at 
10.6 MPa. All other parameters were the same. Figure 16 shows the time variation 
of pressure a t  different points of the model. The labelling of the curves corresponds 
to that in figure 14. Despite the fact that the difference in pressure between the ends 
of the model is one and a half times smaller than in the first experiment, the process 
now is much more complicated. One could very clearly observe that the pressure at  
the points located closer to the exit was constantly higher than it was a t  the points 
located farther away from the exit (the overlapping of curves 2, 3 and 3, 4). The 
oscillations a t  the point r5 had a clearly distinguished period of about 2 hours. The 
amplitude of oscillations reached 0.8 MPa. At times where the oscillations in the first 
experiment died away, no damping of autowaves was now observed. According to 
our theory, this is an indication of the relaxation processes slowing down as the 
region of non-stable stationary solutions is approached. 

Curve 2 in figure 15 shows the time dependence of the velocity at the exit. The 
velocity reaches its minimum at t = 40 min. After that, against a background of 
small-scale oscillations, a slow increase of velocity occurs, which is then replaced first 
by a slow and then by a more rapid decrease. The minimum of velocity is reached at 
t = 155 min, and this minimum is much deeper than the first one. After that the 
velocity rises, which corresponds to cyclic resumption of auto-oscillations. Such 
behaviour of the velocity is associated with a slow accumulation of the liquid phase 
replaced by abrupt ‘shutting down’ of the filtration flow, and then by the emergence 
of the liquid phase that has acquired sufficient mobility. 

Thus, the autowaves in the case of filtration with phase transitions have been 
experimentally observed. The results of these experiments confirm the following 
predictions of the theory. 

The autowaves can be observed in an open system if the region of the flow consists 
of areas corresponding to retrograde condensation and to evaporation processes. 

In  those regions of the flow that correspond to retrograde condensation, the 
pressure may have non-monotonic profiles. According to the considerations of $4, 
this suggests an actual observation of the effect of negative compressibility of an 
individual volume of the moving mixture. 
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The non-monotonic profiles were observed only when the pressure difference 
between the ends of the model was smaller (i.e. in the second experiment). This agrees 
remarkably well with the results of calculations presented in 9 3, where the pressure 
a t  one of the ends corresponded to an unstable spatially homogeneous solution, the 
pressure difference between the ends was varied, and non-monotonic profiles of P 
were observed only for sufficiently small pressure difference. 

The relaxation time in the system grows as the instability is approached: in this 
case the parameter that determines the proximity of the system to the instability 
region is the deviation of pressure at the exit from the maximum condensation 
pressure. This result is very significant in confirming the theory, since in the second 
experiment it was natural to expect a more rapid damping of oscillations. This would 
have been the case if we were dealing with a one-phase liquid moving in the porous 
medium and filtration occurred without phase transitions. As one can see, the phase 
transitions in the filtration process can significantly change the situation. 

Thus, one more example of self-organization in dynamical systems has been 
discovered and described. Let us note that the succession of events that have led to 
the results presented above was the following. First, in calculations with the data 
from a real depositst we have numerically observed the autowave regimes. Then we 
have constructed a theory of these phenomena and, finally, this theory was 
confirmed experimentally. In  our opinion, this course of events may serve as an 
additional confirmation of the correctness of our theory. 

However, it  is necessary to undertake a programme of investigation of autowave 
filtration flows. The programme must include investigations of the thermodynamical 
properties of mixtures in retrograde conditions (in particular, experiment with 
descending density branch are considered in §4), experimental investigations of the 
hydrodynamics of multicomponent fluids in porous media for retrograde conditions 
and, finally, improvement of numerical methods of solving multicomponent filtration 
equations. Our numerical method used above permits regions of instability to be 
found and the dynamics of autowaves to be described. However, it was not specially 
aimed a t  calculation of time-discontinuities (relaxation) processes. In a simple case 
this can be illustrated by ‘slow’ Van der Pol equation 

(1-qP)- dllr = 7) 

dt 

It is obvious that any direct numerical method leads to the accuracy loss near 
discontinuous points v,b = 1. Two approaches to correction are possible. Firstly, the 
term - d2@/dt2 should be added to (6.1) and then one can solve the full Van der Pol 
equation. For the problem of multicomponent filtration it means solving general 
equations (5.1), (5.2). Secondly, (2.1) can be solved with control of the value aN/BP 
a t  any sites of the different grid (IaN/lIPI > E ) .  We hope to consider these questions 
in detail in a future publication. 

The author is very grateful to V. N. Nikolaevsky and B. V. Makeev for useful 
discussions of this work. 

t In 1985 I carried out calculations of problems of stationary inflow to a well for deposit 
Karachaganak. However, it  was found that for some initial conditions a stationary solution could 
not exist. Later I learnt that the same effects impeding the use of standard methods of well testing 
had in fact been observed for Karachaganak. 
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